scalable software design

vision & approach
to software engineering

Lodewijk Bergmans

Summary

is about continuously balancing three key dimensions: technology,
people, and value:
= technology: how to apply SE techniques to manage software development.
= people: how to empower people to work effectively and manage complexity.

= value: the continuous economical trade-offs that must be considered; are the costs
worth the benefits, are development efforts delivering value to the customer.

Our unique approach is to 'calibrate' this balance using the vision and techniques of
scalable design, with a toolbox of common, state-of-the-art and unique composition
techniques, the latter developed in recent years at the University of Twente.

A has the ability to enhance the design model of a system by adding or
modifying functionality or features with minimal effort (impact). In other words, it is a
design that is scalable with respect to evolving requirements, growing features and
functionality, changes and extensions, and alternative implementations for different
environments and platforms.

© 2009 steX bv www.stexbv.com info@stexbv.com +31-6511 00 838

© 2009 steX bv

scalable software design

Economics of software development:

Scalable Design

Why do we need scalable design?

Vision on Software Engineering
I. Technology
Il. People
lIl. Value

Impact of scalable design on software engineering
I. Technology toolbox for scalable design
Il. Achieve scalable design with people

Ill. Use scalable design to deliver value
Design a scalable software development organization

Pragmatic software engineering consulting
Approach

Consulting services

software evolves, (Technology

design must scale
A

&

/
PR
Y

oy
‘N

www.stexbv.com info@stexbv.com +31-65 11 00 838

© o o & u uu u Ul B W

[y
o

(S =
N B =

scalable software design

The following picture is derived from a 2009 IBM white
paper by Walker Royce, titled “Improving Software
Economics”:

Increased Flexibility by

Reducing Complexity
Improve process
Much culture change

Costs=25%-50% Some cuture change Improve Teamwork
(Per person year costs) Costs=10%-35% Automate more
Timeframe = Years (Per parson year costs) Pradictabie
Impacts: 2x - 10x Timeframe = Months Coste=S-10% Very predctabie
Impacts: 25%-100% (Par person year costs) Costs= < 5%
(Per parson year costs)

Timeframe = Weeks
impacts: 15%-35% Timerame = Days/'wesks
» 4 Impacts: 5%-25%

TR

The purpose of this figure is to illustrate the potential impact
of 4 types of improvement in software development
activities; each of these require an investment, and
successfully addressing that issue has a prognosed impact;
the message of the white paper is that the best way of
approaching software improvement is by a balanced attack
on all dimensions. However, we would still like to point out
the huge potential of complexity reduction.

© 2009 steX bv www.stexbv.com info@stexbv.com +31-6511 00838

scalable software design

A scalable design refers to the ability to enhance the design
of a system by adding or modifying functionality or features
with minimal effort (impact).

Note that we emphasize the design itself; the structure and
conceptual model of a system, rather than how the
performance of a system can be maintained as its load
increases (i.e. scalable performance). However; a good
scalable design should also scale with respect to different
performance requirements and their implementations!

= continuous change: software designs are not cast in
concrete, and have never been. Now, more then ever
(and even more so in the future), the world changes, so
the requirements of software change, evolve and grow:
on average, 70% of the development effort takes place
after the initial delivery. This requires a software design
that scales with the stream of change requests and
features.

= managing complexity: The study by IBM we mentioned
on page 3 proposes that of all possible productivity
improvements, the potential gains of reducing complexity
are up to 10 times higher than other improvements (and
in fact estimated to yield up to 10x productivity
improvements). Managing complexity requires that the
software design is structured such that new or changing
requirements can be incorporated without significantly
affecting the structure of the system.

© 2009 steX bv www.stexbv.com info@stexbv.com +31-6511 00 838

(S

Illl:_lxj/j

© 2009 steX bv

scalable software design

Software engineering is sometimes considered a technical
discipline. However, this is only partially true; truly effective
software development projects require careful attention to,
and balancing of human factors, and economical
considerations as well. We summarize these three
disciplines with the keywords technology, people and value:

Software development is clearly a technology intensive
discipline; both inside our products, and during product
development, we apply a lot of technology, which is rapidly
changing all time. The technology dimension includes the
models, languages and design techniques that are used in
software development.

Software engineering requires us to consider how to use
technology—with care—to build better and cheaper products,
and how technology can support software development
activities.

The people dimension addresses how people learn, create,
build models, manage complexity, make mistakes, and work
together while constructing software systems.

This dimension considers what are suitable processes,
methods, notations, tools and languages to support people
in the software development activities.

Value, costs and economics are unavoidable factors to
consider in any professional activity. Software engineering
must consider the costs and benefits involved in developing
a product; this applies to both the products, and the
process, by which the product is constructed, maintained
and evolved.

Costs are the eternal trade-off factor that we must take into
account; it impacts the choice of technology, processes and
product features. In the end, we need to consider the
expected benefits in terms of (long-term) profits and the
associated costs.

www.stexbv.com info@stexbv.com +31-65 11 00 838

scalable software design

The realization of scalable design impacts many aspects in
software development. Here is how it affects the three
dimensions of software engineering we presented before:

In the technology dimension, the software engineer needs a
large toolbox of methods and techniques; we have unique
knowledge, skills and experience in this area. The following
are common techniques for achieving scalable designs:

= (architecture) design methods: this is a key element; only
a careful design of the architecture can achieve a scalable
design. Important characteristics are identification of
stable key concepts, separation of concern and
composability of architectural abstractions.

= product lines: a software product line is a set of software
systems that share common features and that are
developed systematically from a common set of core
assets. It is a key enabler for achieving better reuse,
shorter time-to-market and better reliability with reduced
efforts.

* model-driven engineering (MDE) and domain-specific
languages (DSLs): these are modern approaches that
enable software development at a higher level of
abstraction; closer to the problem domain, while
reducing the amount of (repetitive) code and improving
platform independence.

= frameworks: (application) frameworks are well-organized
software libraries that capture the essential and common
abstractions in a specific domain, allowing for substantial
reuse while retaining full flexibility.

(continues on next page...)

© 2009 steX bv www.stexbv.com info@stexbv.com +31-6511 00 838

© 2009 steX bv

scalable software design

(continuation of common techniques for scalable design:)

= modular software: the key enabler for a scalable
software design is the ability to define and compose
individual building blocks; to this end, many techniques
exist, several of these can be used concurrently:

= component infrastructure: computing platform
interfaces that package typical units of deployment
such as .NET assemblies, Java Beans and OSGI bundles,
CORBA and COM components.

= plug-in models: allow for ‘graceful promotion’ of a
system by incremental extensions; for example Eclipse
plug-in architecture, OSGI bundles. This is especially
interesting for third-party extensions in a software
platform/ecosystem context.

= composition techniques: we have extensive
knowledge of and experience with many forms of
object-oriented and aspect-oriented composition.

= Domain Specific Composition technology: a new
paradigm in constructing highly flexible and modular
systems; this is particularly interesting if your software
is offering its users capabilities for aggregating or
combining parts. Ask us about it!

www.stexbv.com info@stexbv.com +31-65 11 00 838

© 2009 steX bv

scalable software design

Achieving scalable design may involve substantial changes to
organization, process and the skills and mindset of both
software engineers, project managers and stake-holders (!).
The pragmatic way to achieve this is by adopting a scalable
improvement process:

= Create a ‘scalable design mindset’: continuous awareness
that every activity, and every next deadline is just a small
step on the grand scale of a long-lived system, and if done
well, its results may last for a long time, and in multiple
contexts.

= Start by improving the tools and way of working, such
that these match the available skills and organizational
context.

= adopt many of the best practices from agile software
development, such as test-driven approaches, continuous
refactoring and short incremental development cycles.

= an appropriate software development infrastructure is an
important enabler: version management, build
environment, tool support for automated testing,
etcetera.

= Scale up the knowledge and skills of involved people
through teaching, mentoring, leadership, so that they are
mentally equipped to create scalable designs.

www.stexbv.com info@stexbv.com +31-65 11 00 838

© 2009 steX bv

scalable software design

The goal of scalable design is to ensure that created
software artifacts keep being (re-) used, in other words, to
maximize the value per effort. Along the same lines, it is
important to prioritize the artifacts that are of the most
value to the customer.

= Hence, scale the developed product to the circumstances;
this combines very well with the scalable design practice
of centering the design around the core concepts of the
solution.

» Incremental (lean) development: first build the features
that deliver the most value. Note that incremental
development can only scale up if the underlying
architecture is sufficiently stable and flexible!

= Enable and exploit reuse of software artifacts to avoid
unnecessary efforts:

= by creating reusable abstractions

= by adopting a product line approach; this enables
systematic reuse between similar products, even while
these products keep evolving!

= through the adoption of other techniques, such as
application frameworks, DSLs, as discussed in the section
‘I. Technology toolbox for scalable design’ on page 6.

www.stexbv.com info@stexbv.com +31-65 11 00 838

© 2009 steX bv

scalable software design

In a certain sense, one has to design a feasible development
process by taking into account, and balancing, the three
dimensions of technology, people and value. As in any
design activity, this involves making continuous trade-offs;
what are the expected benefits vs. costs of a long-lived
system? what is the (total) cost of adopting advanced tools
and techniques, and how much benefit do they offer? Do we
need, and expect, all persons to rise to an expert level? How
many simultaneous innovations can we manage within a
single project?

We aim to co-operate with its customers to identify the
trade-offs, and weigh the involved concerns to make
deliberate decisions on how to improve the software
engineering activities of the customer.

www.stexbv.com info@stexbv.com +31-65 11 00 838

© 2009 steX bv

scalable software design

Our view on pragmatic software engineering consulting is to
carefully consider all three dimensions when deciding how
to improve a project or an organization. Then, address these
dimensions in a sequence of steps;

= |isten: first, understand the problems, domain and forces
in the customer context. Second: keep on listening as
time continues..

= understand: analyze the origin of the problems: are they
related to process or methods, way of working, adopted
tools and techniques, or the design decisions that have
(not) been made? How do they relate to the goals of the
business?

= solve: propose solutions that offer a careful weighing of
the factors technology, people, and value.
= consolidate: make sure that the proposed solutions are
consolidated; for example as architectural and design
documentation, as documented process guidelines, by a
tool adoption process, or by a teaching and mentoring
trajectory.
Pragmatic software engineering is about continuously
considering the three dimensions, not focusing on only
technological, process or economical improvements and
ignoring the others.

www.stexbv.com info@stexbv.com +31-65 11 00 838

scalable software design

We offer the following services:

= design & architecture consulting: contribute to, or lead,
software (architecture) design activities

= design assessments (audits): identify risks, provide
recommendations

= improve way of working: develop a way of working that
is tailored to the skills and practices of the customer, and
introduce it into the organization, for example with the
help of:

= mentoring & courses: consolidate knowledge and skills in
an organization by tailored courses and on-the-job
mentoring.

= composition technology consulting: tap our expert
knowledge on e.g. advanced object-oriented and aspect-
oriented composition techniques, and our experience in
introducing these in organizations.

We are happy to discuss risk sharing and fixed price
alternatives!

© 2009 steX bv www.stexbv.com info@stexbv.com +31-6511 00 838

